RELATIONS AND FUNCTIONS
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DEPT. OF MATHEMATICS

1-6 Relations and Functions



Review

= Arelation between two variables x and y
IS a set of ordered pairs

= An ordered pair consist of a x and y-
coordinate

= Arelation may be viewed as ordered pairs,
mapping design, table, equation, or written in

sentences
= X-values are inputs, domain, independent
variable

= Y-values are outputs, range, dependent
variable
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Example 1

{(Q _5)! (11 _4)1 (21 _3)1 (31 _2)’ (41_1)1 (5’0)}

* What is the domain¢
{0,1,2,3,4,5}
What is the range<
{-5, 4, -3, -2, -1, 0}
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Example 2

= Cé 0

* What is the domain®
{4, -5,0, 9, -1}
* What is the range?
{-2, 7}
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Is a relation a function?

What is a function?

According to the textbook, “a
function is...a relation in which
every input is paired with
exactly one output”

03/03/2020 1:27 PM 1-6 Relations and Functions



Is a relation a function?

*Focus on the x-coordinates, when given a relation

If the set of ordered pairs have different x-coordinates,
It IS A function

If the set of ordered pairs have same x-coordinates,
It is NOT a function

*Y-coordinates have no bearing in determining
functions
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Example 3

{(Q _5)! (11 _4)1 (21 _3)1 (31 _2)1 (4’_1)1 (510)}

e|s this a function?
*Hint: Look only at the x-coordinates

YES
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Example 4
{(_11 _7)1 (1’ 0)1 (21 _3)1 (O,—S), (015)1 (_2 1_1 )}

e|s this a function?
*Hint: Look only at the x-coordinates

NO
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Example 5

Which mapping represents a function?

Choice One Choice Two

N
"

Choice 1
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Example 6

A.

Which mapping represents a function?

Domain Range
'SR )
A
#ffffﬁ?
2 > B
\1 C
N N
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B.

Domain

A
B

Range
N

C—
e
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Example 7

Which situation represents a function?

a. [The items in a store to their prices on a
certain date

b. Types of fruits to their colors

A fruit, such as an apple, from the
different item on a certain date. The domam would be ’05500’7’de W’(fjh |
relation from items to price makes it a more than one color, such as red an
function. green. The relation from types of fruits
to their colors is not a function.

There is only one price for each
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Vertical Line Test

* Vertical Line Test: a relation is a function
if a vertical line drawn through its graph,
passes through only one point.

AKA: “The Pencil Test”

Take a pencil and move it from left to right
(-x to x); if it crosses more than one point,
it iIs not a function
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Vertical Line Test

Would this
graph be a
function?
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YES
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Vertical Line Test

Would this
graph be a

Q —  function?

NO
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Is the following function discrete or continuous? What is
the Domain? What is the Range?
373iasRssEts Discrete
8 | .
Hiey e 7,1,5,7,8, 10
4 B a -
SEENENAST SHENENEEY Domain: /557819
STTITESEEIsTESTIRs 107528
:lu._-a.. _43.?4__.12.&- : iﬁ _a.___m H-ﬂ-n g B { }
| |
Y GEEEE ........
ol ol
- - _Iﬂ.....l =TT
gL ]
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Is the following function discrete or continuous? What is

the Domain? What is the Range?

/:/,\ Type: CONtinuous
TR Domain: __ 9

59

\ Range:
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80
70
b0
50
40
30
20
10

Is the following function discrete or continuous? What is

the Domain? What is the Range?

[ i [ i
3 10 13 20 25 30 35 40 45 30
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Is the following function discrete or continuous? What is

the Domain? What is the Range?

: .
EEEE: ] Type: discrete
e _ {-7.-5,-3,-1,1,3,5,7}

MHerihbet oy Domain:

T TRETT - 2,3,4,5,
sEHHGy  Range 20> ]
EEaEnimmEEm:
ms
8
16
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The Imaginary Number |

It's any
number
you can
imagine

o By definition +-1=i <

o Consider powers if j
ic=-1




Using |

o Now we can handle quantities that
occasionally show up in mathematical
solutions

J-a =J/-13/a=iVa

o What about

J-49 J-18



Complex Numbers

o Combine real numbers with imaginary

numbers
ea + bi
/ L Imaginary
Real part part
o Examples 3

344 02
| 45+ 26




Try It Out

o Write these complex numbers in
standard form a + bir

9—+/-75
\/%+7
5-/—144

—/—100



Operations on Complex Numbers

o Complex numbers can be combined with
e addition

e Ssubtraction
e multiplication
e division

o Consider (—3+i)—(—8+2i)

(9-12i)

7+15i)
(2—-4i)+(4+3)



Operations on Complex Numbers

o Division technique

e Multiply numerator and denominator by the
conjugate of the denominator

25— 42
_-6+15 __6 15
29 29 29




Complex Numbers on the Calculator

i Fiw Fyr FE*
= ;:EngebPaEalcDthegkrgmldklean UPT_W

o Possible result

Hor—rea 1 result
T e _
i HIJ[IE -,
743 [pate tlpate 2lpae 3|
o Reset mode e T

DIETIEH Digits.... FLDHT ]
Ang

Expnnéﬁiiéi'ﬁéﬁﬁéi HGEFEL +
C 1 F t.
Complex format e T —
Ent.er=5AUE ESC=CHAHCEL
m
to Rectanqgular _(ES L))

HMAIN

DEG AUTO

o Now calculator does

desired result N®

DEG AUTO FUMC /=0




Complex Numbers on the Calculator

o Operations with complex on calculator

*3 TexAs INSTRUMENTS

|‘F1 T Fev FEw | Fiv FE FE™ ]’]
vzzgﬂlgebraCachthe;&Pngdkleah Up

Error: Hon-real result N, .
a[-45+3 T+ 7i [ =gt §
"(Z-28)(6+53) 26+34 SN
C3-210%Cb6+541)

Make sure to use the Q™
correct character fori.
Use 2nd-j




Warning A A

o Consider V=16 [1/-49

o It is tempting to combine them
J-16349 =/+16[49 = 4[T = 28

e The multiplicative property of radicals only
works for positive values under the radical sign

e Instead use imaginary numbers

J-160349 =4i[Ti =4[70° =-28
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If a Is a constant, we say that f(x) Is
differentiable at x = a Iif we can evaluate the
following limit to determine f(a).

f(a+h)- f(a)
h

@ =

Conversely, If this limit does not exist, then
f(x) Is nondifferentiable at x = a.



There are many geometric representations
of f(x) for functions that are
nondifferentiable at x = a.

These can result if f(x) has no tangent line
at x = a, or If f(x) has a vertical tangent |
at X = a.
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A railroad company charges $10 per mile to
haul a boxcar up to 200 miles and $8 per mile
for each mile exceeding 200. In addition, the

railroad charges a $1000 handling charge per
boxcar.

Graph the cost of sending a boxcar x miles.



If X Is at most 200 miles, then the cost C(x) Is
given by:
C(x) = 1000 + 10x dollars

If x exceeds 200 miles, then the cost will be
C(x) = 3000 + 8(>- 200) = 1400 + 8

So the function C(x) Is given by
1000+10x, 0< x< 200

C(X) =+
1400+ 8x, x>200




The graph of C(x) Is

iy = Clx]
Slope 15 8

{lost

1060

Distance (miles)
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|Inverse Laplace Transformsl

Background: ‘

To find the inverse Laplace transform we use transform pairs
along with partial fraction expansion:

F(s) can be written as,

F(s)=@

Q(s)

Where P(s) & Q(s) are polynomialsin the Laplace variable, s.

We assume the order of Q(s) = P(s), in order to be in proper
form. If F(s) isnot in proper form we use long division and
divide Q(s) into P(s) until we get aremaining ratio of polynomials
that are in proper form.



|Inverse Laplace Transformsl

Background:

There are three cases to consider in doing the paat fraction expansion of F(s).

Case 1 F(s) has all non repeated simple roots.

K k
F(g=—21-+—2 + . +1
Stp, Stp, S+ P,

Case .. F(s) has complex pole:

*

P,(s) K, K,

“Q)(s+a-ifs+a+iB) sta-iB s+a+ip)

F(s)

*...+ (expanded)

Case 3 F(s) has repeated poles.

P (s) k k k P.(s)
1 =_ 11 4 12 4 W 4 41
5) (expanded)

F(s)= -= 5 -t
Q(s)(s+p)" S+p. (s+p) (s+p) Q(
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Case 1: lllustration:

Given:
4(s+2) AL A A

F(s)= =1 + +
(s+1)(s+4)(s+10) (s+1) (s+4) (s+10)

)
Find A, A,, A; from Heavyside (ﬁe
% (e

A= (s+1)4(s+2)
(s¥1)(s+4)(s+10)

_ (s+AA(s+2) i
= (s+1)(s+4)(s+10) ls=—a =49

o= 4/27

A = (s+10)4(s+2)

= s+ 1)(s+ ) sexoyis=10 - T 1827

f(t)=|@/27e™ + (4/9)e™ + (-16/27)e 1 |u(t)



|Inverse Laplace Transformsl

Case 3: Repeated roots.

When we have repeated roots we find the coefficients of the
terms as follows:

d r
klr -1 =£ [(S+ pl) F (S)]lsz— P

»)\. )D
K, = 5+ ) F(lem—py,

(r—J)dSr J
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Case 3: Repeated roots. Example

(s+) _ A, K K

I:(S)zs(s+3)2 s (s+3) (s+3)*




|Inverse Laplace Transformsl

Case 2: Complex Roots F(s) is of the form;

R % ! +...+

F(s)= . — = — + .
Q(s)(sta—|B)s+a+|B) sta-|B s+a+|p)

K, Is given by
(= (ra=iPRe
LQ9) (sta=if)(s+a+ip) ST

_ _ o
K, =IK, 108 =K, e



L—l

| K |1 |:€J0e_m eJﬂ[ + e_J:Be—O't e_Jﬂ[:| :2| Klle—at
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Case 2: Complex Roots

Ky Ky

i@ -6
|K1|e |K1e

+ = +
s+ta-|f s+a+|f s+ta-|f s+a+|f

jé -6
K, 16! 1K, e

sta- | s+ta+|f

=|Kll[ejge_mej'a+e_j'8e_me_j'6t}

i(B+6), i(A+6)

2




|Inverse Laplace Transformsl

‘Case 2. Complex Roots‘

Therefore:
_ vz g "
| 1K |€] |K.€e _
L7t —2 1 =2|K1|em[cos(8[+9)]

+
sta—-|f s+a+|f

A3
( N

7))
Y A

You should put this in your memory:
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Complex Roots: An Example.

For the given F(s) find f(t)

(s+1) _ (s+1)

F(s) = = : :
S(s°+4s+5) S(s+2-j)(s+2+])
K K
F(e) = 2+ 1 4 1
S S+2—] S+2+]

_ (s+1) | _ 1
(S* +4s+5)15=0 5

(s+1) Ry

= = = 0320 -108
os(st2+ J')|'5'='2+J (=2+)(2))
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Complex Roots: An Example.| (continued)

We then have;

0.2 0320-108 0.3200+108
F(s) =— + — + :
S S+2— | S+2+ |

%
=<

——
—=

Recallingthe form of the inverse for complex roots;

5@*" f(t) =| 0.2+ 0.64e 2 cost-108 Ju(t)



|Inverse Laplace Transformsl

Convolution Integral:

Consider that we have the following situation.

System

X(®) o) y@® ,

X(t) isthe input to the system.
n(t) is the impulse response of the system.
y(t) isthe output of the system.

We will look at how the above isrelated in the time domain
and in the Laplace transform.
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Convolution Integral:

In the time domain we can write the following:

=1 T =t
y(t)=x(t) O h(t)= T [x(t-n)h(r)dr = [h(t-7)x(7)dr
r =0 r =0

In this case Xx(t) and h(t) are said to be convolved and the
Integral on the right is called the convolution integral.

It can be shown that,

L|x(t)Oh(t)] =Y(s) = X(s)H(s)

This is very important

* note
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Convolution Integral:

Through an example let us see how the convolution integral
and the Laplace transform are related.

We now think of the following situation:

h(t)
X(t) y()
oA X
H
X(s) 1(3) Y ()
] (s+4) ]
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Convolution Integral:
From the previous diagram we note the following:

X(9=L[x®]; Y(9)=L[y®)} H(s)=L[h(t)]

h(t) is called the system impulse response for the following
reason

Y(s)=X(s)H(s) EqA

If the input x(t) is a unit impulse, &(t), the L(x(t)) = X(s) = 1.
Since x(t) is an impulse, we say that y(t) is the impulse
response. From Eq A, if X(s) =1, then Y(s) = H(S). Since,

L*[Y (s)]= y(t) =impulse response = L*[H (s)[h(t)
S0, h(t) = system impulse response.



|Inverse Laplace Transformsl

Convolution Integral:

A really important thing here is that anytime you are given
a system diagram as follows,

X(S) Y(S)
> H(s) >

the inverse Laplace transform of H(s) is the system’s
Impulse response.

This Is important !!
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Convolution Integral:
Example using the convolution integral.

A y() = ?
e—4t

oo —4(t—-1) t —4(t-7) —4tt 4
y(t)= [ e u(r)dr=[e dr=e " [e™dr
o 0 0
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Convolution Integral:

Same example but using Laplace.

X® =u®) — X(9)=1

h(t) = e*u(t) —— H(s)= 1

S+4

Y(S): 1 :A+ = :1/4—£
S(s+4) s s+4 s s+4

y(t) = %[1—e“”]u(t)
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Convolution Integral:

Practice problems:

(a) If X(s)=§ and Y(s) = , what is h(t)?

(s+2)
h(t)=15[a(t) - 2¢72u(t)]

(b) If x(t)=u(t) and y(t)=te®u(t), find h(t).

(c) If x(t)=tu(t) and H(s)= , find y(t).

(s+4)°

Answers given on note page
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Circuit theory problem:

You are given the circuit shown below.

t=0 6kQ
/
"

- M
+
12 Vé v(t) == é 3k O

Use Laplace transforms to find v(t) fort > 0.
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Circuit theory problem:

We see from the circuit,

t=0 6 kQ
— MA
+
12V v(t) == S$3kQ
_ | 100uF 1

v(O)=12xg = 4volts
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Circuit theory problem:

Take the Laplace transform
of this equations including
the initial conditions on v(t)

RC

dt

av, (1)
dt

dt

+v (t)=0

+ Vc(t) — O
RC

+ 5v(t)=0
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Circuit theory problem:

de (1)
dt

+5vC(t)=O
sVC(s)—4+5VC(s) =0

A4
V (S)=——
.(9) —_—

v (t) = 4e7>u(t)







Definition

* The Laplace transform is a linear operator
that switched a function (t) to F(s).

+ Specifically: FORFSVOVEN RSO

where:

« Go from time argument with real input to a
complex angular frequency input which is
complex.




Restrictions

* There are two governing factors that
determine whether Laplace transforms can
be used.:

= f(t) must be at least piecewise continuous for
t=0

= |f(t)| < MeY'where M and y are constants




Continuity

« Since the general form of the Laplace
transform is:

It makes sense that f(t) must be at least
piecewise continuous for t = 0.

« If f(t) were very nasty, the integral would
not be computable.




Boundedness

« This criterion also follows directly from the
general definition:

« If f(t) iIs not bounded by MeVt then the
integral will not converge.




Laplace Transform Theory

*General Theory F(s) = £L(f(D) = L e~** f(t)dt = lim L e f(t)dt

sExample fo=1
- —st I E_St T
):(f(t}) N .[]. e ldt= !l—ﬂ ( -5 [})

. oqe 1 1
= lim (— + —) =
== \—§ S

g

«Convergence foy=e*

T

L(f(®) = limj et dt =lim | et ~*dt = oo
T—*C0 0

T—=00
0




TABLE 6.2.1 Elementary Laplace Transforms
f)y = L7HFs)} F(s) = LIf (0}

Laplace Transforms

n!
g+l ?

«Some Laplace Transforms I
- - . . > —1
*\Wide variety of function can be transformed ’

. 1", n = positive integer

—S}T, s> 10

5 a
. sinal P s=>0
5‘2+a2
s

sInverse Transform . cosar oo 550

. sinhat P faz, s> |a|
s
A':_l(F(S}) _ f(t} . coshar g
. b
. e"sin bt W N
(s —a)? + b’
. e cos bt L
(s —a)? + b2’
!

. t"e*, n = positive inte e —
> p nteger G

«Often requires partial fractions or other
manipulation to find a form that is easy u® L e
to apply the inverse . wE— -

L eff@) F(s—c¢)

. flen) lF(f), ¢>0

il
; fa “f— et F)G)
. 8(t—c) -

18, f ) SF(s) = (O0) — - — FEI0)

- (=@ F(s)




Laplace Transform for ODEs

d?y

-Equation with initial conditions [IEEFTEREAREEEEAS AR S Al

sLaplace transform is linear LOM+LO)=LA)

*Apply derivative formula s*L(y) —sy(0)—y" (0 + L(y) =

*Rearrange )=t L s
7 T s(s24+1) s s2+1

*Take the inverse y=1—cost




Laplace Transform in PDEs

Laplace transform in two variables (always taken Lru(n ) = Ulx,s) = J -
with respect to time variable, t): °

Inverse laplace of a 2 dimensional PDE: L7HU(x,5)} = u(xt)

Can be used for any dimension PDE: Llulny,zt)}=U(xy.25)

The Transform reduces dimension by “1”:

*ODESs reduce to algebraic equations

*PDESs reduce to either an ODE (if original equation dimension 2) or
another PDE (if original equation dimension >2)




Consider the case where:

u,tu=t with u(x,0)=0 and u(0,t)=t> and

Taking the Laplace of the initial equation leaves U,+ U=1/s? (note that the
partials with respect to “x” do not disappear) with boundary condition
U(0,s)=2/s3

Solving this as an ODE of variable x, U(x,s)=c(s)e™ + 1/s?
Plugging in B.C., 2/s3=c(s) + 1/s? so c(s)=2/s3- 1/s?
U(x,5)=(2/s3 - 1/s?) e*+ 1/s?

Now, we can use the inverse Laplace Transform with respect to s to find

u(x,t)=t2e™ - te + t




Example Solutions




Diffusion Equation
u = ku,, in (0,l)

Initial Conditions:
u(o,t) = u(l,t) =1, u(x,0) =1+ sin(trx/l)

Using af(t) + bg(t) = aF(s) + bG(s)
and df/dt > sF(s) — f(0)

and noting that the partials with respect to x commute with the transforms with
respect to t, the Laplace transform U(Xx,s) satisfies

sU(X,s)— u(x,0) = kL, (x,S)

With et - 1/(s-a)and a=0,
the boundary conditions become U(0,s) = U(l,s) = 1/s.

So we have an ODE in the variable x together with some boundary conditions.
The solution is then:

U(x,s) = 1/s + (1/(s+#2/12))sin(mx/I)
Therefore, when we invert the transform, using the Laplace table:
u(x,t) = 1 + e*eMsin@x/)




Wave Equation

u, = U, in 0 < X <o
Initial Conditions:
u(o,t) = f(t), u(x,0) =x,0) =0

For x = «, we assume that u(x,t) = 0. Because the initial conditions
vanish, the Laplace transform satisfies

U = U,

U(0,s) = F(s)

Solving this ODE, we get

U(x,s) = a(s)&¥c+ b(s)exe

Where a(s) and b(s) are to be determined.

From the assumed property of u, we expect that U(x,s) 2> 0 as X =2 «.

Therefore, b(s) = 0. Hence, U(x,s) = F(s) &% Now we use
H(t-b)f(t-b) > e™F(s)

To get

u(x,t) = H(t — x/c)f(t — x/c).




Real-Life Applications

« Semiconductor
mobility

« Call completion in
wireless networks

* Vehicle vibrations on
compressed rails

« Behavior of magnetic
and electric fields
above the
atmosphere




Ex. Semiconductor Mobility

« Motivation

= Semiconductors are commonly
made with superlattices having
layers of differing compositions

need to determine properties of
carriers in each layer

* concentration of electrons and
holes

« mobility of electrons and holes
conductivity tensor can be related

to Laplace transform of electron
and hole densities




Essential Mathematics for Economics and Businésgdition

PARTIAL DIFFERENTIATION.

PROF.BELOTE S.V.
DEPT. OF MATHEMATICS

www.wiley.com/college/Bradley © John Wiley and Sons 2013



- How to get first order partial derivatives
- What is partial differentiation
- How to get second order partial derivatives
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Graphs and derivatives for function of one variable

Example
— 3 2 _ — 3 2 _
f(X)=—-X"+9x" -24x+26 QR y=-X"+9x° -24x+26

Graph: a curve in 2 dimension\i
D:

Ordinary differentiation:

20

Y _ 332 y18x-24
dx |

5 -zn-:

dx?
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Functions of several variables

Example f(x,y)=x+2y+4 OR z=Xx+2y+4
Graph: a surface in 3 dimensions

Partial differentiation

To differentiatez partially with
respect to

..freaty as a constant
..then differentiate w.r.Kx: --see next slide

NB. @ ..denotes partial differentiation

d ..denotes omlim,ar@ differentiation

0z , oy
—or z, .denote the parvtial devivative of z wrt x

0X

www.wiley.com/college/Bradley © John Wiley and Sons 2013




. : . L 0
Determine the first partial derivative of z w.r.t x: a—)z( or z,

Worked Example 7.2(a) Z=X+2y+4

.treaty as a constant z=x+2y]+4
. . 0z _ _
.then differentiatg w.rt. x: = 5= 1+0+0=1

..since derivatives of
constant terms2fy and4)
are zero

www.wiley.com/college/Bradley © John Wiley and Sons 2013




0z
Determine the first partial derivative of zw.rty: Or z, —
oy
Worked Example 7.2(b) Z=X+2y+4
.treatx as a constant z=[x]+2y+4

o ]

.then differentiate w.r.y: 5y~ 0+2(1)+0=2

..since derivatives of
constant termsx(and4) are
ZEero

www.wiley.com/college/Bradley © John Wiley and Sons 2013




e
Worked Example 7.3

Find the first-order partial derivatives for each of
the following functions.

(@) z=2x°+3xy+5
(b) Q=10.%K®
(C) U :X2y5

www.wiley.com/college/Bradley © John Wiley and Sons 2013




Determine the first partial derivative of z w.rtx; 92 o z,

0X

Worked Example 7.3(8)  z=2x% +3xy+5
.treaty as a constant 7=2x°+ 3Jy]+5

0z \ \

..then differentiate w.r.x: ™ =2(2x)+3(Q)y
X

%:4x+3y

0X

www.wiley.com/college/Bradley © John Wiley and Sons 2013




Determine the first partial derivative of z w.r.ty: % orz,
oy
Worked Example 7.3(a) 7= 2x2 + 3Xy +5
.treatx as a constant Z= 2[x2] +3Xx]y+5

/

..then differentiate w.r.t. y: g_z =0+3x(1)+0
y

0z _

— =3X
oy

www.wiley.com/college/Bradley © John Wiley and Sons 2013




T
0Q

Determine the first partial derivative of Q wirt L: O_L orQ,

Worked Example 7.3(b) Q= 10.%7K 93

.treatk as a constant Q= 1OLO'7[ K 03]

\

..then differentiat€) w.r.t. L: Z—S = 1({0.7LQ7_1)K 03

0Q _ 5 03, 03
oL
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2Q

O Qx the first partial derivative of Q wrt K:

Worked Example 7.3(b) Q= 10.%7K 93

.treatL as a constant Q=1] LO'7] K 03

\

..then differentiat® w.r.t. K: Z—CKD =10.Y (O.BK 03—1)

9Q _ 507, -07

www.wiley.com/college/Bradley © John Wiley and Sons 2013




%—U the first partial derivative of U wrt x:
X

Worked Example 7.3(c) U=x°y">

.treaty as a constant U = x2[ y5]
| | 0 _\ 5
..then differentiat&J w.r.t. x: W =(2x)y
ouU 5
_ :2
10)4 Y
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oU . . L
a—y the first partial derivative of U wrt y:
Worked Example 7.3(c) U=x°y°
.treatx as a constant U = [x2] y5
. : . 0U o, "4
.then differentiat®) w.r.t.y: Z= =x“(5y™)
i,
a_U :5)(2y4
oy
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e
Worked Example 7.4

Find the second order partial derivatives for
each of the following functions.

(@) z=2x%+3xy+5
b) o=10%k®
(C) U :X2y5

www.wiley.com/college/Bradley © John Wiley and Sons 2013




0°z
a2 O second partial derivative of z wrt X:

Worked Example 7.4(a) Z=2x°+3xy+5
. . o 0z
first partial derivativez, FW =4x+3y
see Worked example 7.3
0z
.treaty as a constant F™ =4x+3Jy]
0°z \

0z _ _
.differentiate— W.r.tX —6 > 41 =4+0
0X X
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2
0z the second partial derivative of z wrt y:

oy*
Worked Example 7.4(a) Z=2x°+3xy+5
first partial derivati aZ—3x
_first partial derivativez — =
P y dy
see Worked Example 7.3 07
_treatx as a constant ay =3 X]
02
differentiateE W.I.tY: 2%-0
N 9y Wy oy
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0°z
dyox the second partial derivative of z wrt x and y:
Worked Example 7.4(a) Z=2x°+3xy+5
. . o 0z
first partial derivativez, FW =4x+3y
see Worked Example 7.3 37
.treatx as a constant E™ =4[] +?/
. .. 0z 0°z
— ; =0+3(1) =3
.differentiate > Wty oy Ox 1)
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52_Q or Q,,: second partial derivative of Q wrt L

oL’
Wor ked Example 7.4(b)

first partial derivativeQ,

.freatk as a constant

..then differentiat€) w.r.t.L:

www.wiley.com/college/Bradley

0Q _ 5 03, 03

0Q _ 71703 03

2 \
07 S = 7(— 0.3L‘°-3‘1).< 03
oL

2
07Q _ 513k ®

L2

© John Wiley and Sons 2013



0°Q
0

K2

Wor ked Example 7.4(b)

first partial derivative,

.freatL as a constant

.differentiateQ, w.r.t. K:

www.wiley.coiri/coliege/Bradley

. the second partial derivative of Q wrt K

Q= 1OLO.7 K 03
oK

0 _
a_CKD - 31071k 07

2
K

0°Q _ _5q 07 17
oK 2

© John Wiley and Sons 2013



T
0°Q

oK aL the second ‘mixed’ partial derivative of Q

Worked Example 7.4(b) Q=10%"K%
first partial derivativeQ, 0Q _ 71 703K O3

0Q _ - -0.37, 03
.treatL as a constant oL 1L ]K\

- - 0°Q __ -03 03-1
.differentiateQ, w.r.t. K: =7L “~10.3K
oK oL
aZQ — 2 1L—1.3 K -07
oKaL

www.wiley.com/coliege/Bradiey © John Wiley and Sons 2013




32;2 the second partial derivative: U,
Worked Example 7.4(c) U=x°y">
first partial derivativeU,, %—L)J( =2xy”

.treaty as a constant %—L)J( =2Xy’]
9°U

..then differentiatéJ, w.r.t. x: - =2(1)y° = 2y°

0 X

www.wiley.com/college/Bradley © John Wiley and Sons 2013




0°U | o
9y the second partial derivative: U,
Worked Example 7.4(c) U = x? y5
ouU
.first partial derivativeU, a—y :5x2y4
oU - 2.4
.treatx as a constant dy = x]y
0°U 2 \ 3 2.3
.then differentiatéJ, w.r.t. y: W:&( (4y~) = 20x"y

www.wiley.com/college/Bradley © John Wiley and Sons 2013




0°U . L
the second mixed derivative: U
0y 0 X Xy
Worked Example 7.4(c) U=x°y">
. . o ouU
first partial derivativeU, Ix =2Xy5
ouU
.treatx as a constant e =2Ix]y”
. . 0°U _ 4y _ 4
-then differentiat®), w.rt.y: 3,5, ~2X(OY ) =10%

www.wiley.com/college/Bradley © John Wiley and Sons 2013




PROF.BELOTE S. V.
DEPT. OF MATHEMATICS




Words to know....

 Naturals - natural numbers

« Wh les - natural counting numbers and

e Integers -- natural numbers
or zero
{-2,-1,0,1, 2,...}




Words to know....
Rational Number - any number which can be

Irrational Number_ —
Any decimal number which
A non-terminating and non-repeating decimal.

Example —
[1=3.1415926....

numbers and numbers.




Real Numbers
Rational Numbers

45 27 0.3
4

Integers

-1 =3

Whole Numbers




Sets of Numbers - (using a tree map)

I__L_I

fractionsiaecimals

T i

Negativeilntegers Wholes

0TI




Let’s practice

Directions: Identify each number below as natural, whole, integer,
rational, irrational, or real. More than one answer can apply.

E:

. @

Rational, 3 m oS
rational,real
real ®

Whole, 4 rational, real
integer, 0
rational, real



Let’s practice

Directions: Identify each number below as natural, whole, integer, rational,
irrational, or real. More than one answer can apply.

Natural,

Natural, integeyvr,
6. Whole, 8 N — ‘/ rational, real
integeyr,
rational,real




Use &, >, or = to compare
L. E@QE ssEOn
2. Q 6. MmO

3. © .0 @ B
1§OF sBHOE




Lesson Quiz

Write all classifications that apply to each number







Definitions

« Seguence: an ordered list of elements

= Like a set, but:
* Elements can be duplicated
* Elements are ordered




Sequences

« A sequence Is a function from a subset of
ZtoasetS

= Usually from the positive or non-negative ints
= aIs the image of n

*a. Is aterm in the sequence

* {a,} means the entire sequence
= [ he same notation as sets!




Seguence examples

*a,=3n
= The terms in the sequence are a,, a,, as, ...
= The sequence {a,}I1s{3,6,9, 12, ...}

. bn — 2n
= The terms in the sequence are by, b,, b, ...
= The sequence {b,}Is {2, 4,8, 16, 32, ... }

* Note that sequences are indexed from 1
= Not in all other textbooks, though!




Geometric vs. arithmetic
seguences

+ The difference is in how they grow

« Arithmetic sequences increase by a constant amount
= a,=3n

= Thesequence{a,}is{3,6,9, 12, ... }

=« Each number is 3 more than the last

« Of the form: f(x) = dx + a

Geometric sequences increase by a constant factor
= b,=2n
= The sequence {b,}is {2, 4,8, 16, 32, ...}
=« Each number is twice the previous
= Of the form: f(x) = ar*




Fibonaccl sequence

* Sequences can be neither geometric or
arithmetic

« F,=F,; +F.,, where the first two terms are 1
« Alternative, F(n) = F(n-1) + F(n-2)

= Each term is the sum of the previous two terms

= Sequence: {1,1, 2,3,5,8, 13, 21, 34,55, ... }

= This is the Fibonacci sequence

= Full formula: IHQE (H_@Hl-_ﬁl

J52"




Fibonaccl sequence

« As the terms Increase, the ratio between
successive terms approaches 1.618

J5+1

@Y - =1.618933989

« This is called the “golden ratio”
= Ratio of human leg length to arm length
= Ratio of successive layers in a conch shell

* Reference: http://en.wikipedia.org/wiki/Golden_ratio




Determining the sequence formula

« Given values In a sequence, how do you
determine the formula?

« Steps to consider:

Is it an arithmetic progression (each term a constant
amount from the last)?

Is it a geometric progression (each term a factor of
the previous term)?

Does the sequence it repeat (or cycle)?
Does the sequence combine previous terms?
Are there runs of the same value?




Determining the sequence formula

Rosen, guestion 9 (page 236)

1,0,14,1,0,0,14,1,1,0,0,0, 1, ...

The sequence alternates 1's and 0’s, increasing the number of
1's and O’s each time

1,2,2,3,4,4,5,6,6,7,8,8, ...

This sequence increases by one, but repeats all even numbers
once

1,0,2,0,4,0,8,0, 16,0, ...

The non-0 numbers are a geometric sequence (27
Interspersed with zeros

3,0, 12, 24, 48, 96, 192, ...
Each term is twice the previous: geometric progression
a, = 3*2n-1




Determining the sequence formula

15, 8, 1, -6, -13, -20, -27, ...
Each term is 7 less than the previous term
: a,=22-17n
3,5,8,12,17, 23, 30, 38, 47/, ...

The difference between successive terms increases by one
each time

=3,a,=a,4,+tn

a = n(n+1)/2 + 2

2 16, 54, 128, 250, 432, 686,
Each term is twice the cube of n

. a,=2*n3

2,3, 7,25,121, 721, 5041, 40321
Each successive term is about n times the previous
a=n+1
My solution: a,=a,;*n-n+1




Useful sequences

‘n’=1,4,09, 16, 25, 36, ...
n3=1, 8, 27, 64, 125, 216, ...
‘nt=1, 16, 81, 256, 625, 1296, ...
*2"=2,4,8, 16, 32,64, ...
*3"=3,9, 27,81, 243, 729, ...
*nl=1, 2,06, 24, 120, 720, ...

« Listed in Table 1, page 228 of Rosen




Evaluating sequences

* Rosen, guestion 13, page 3.2

*2+3+4+5+6=20
© (20 + (214 (227 + (2 + ()¢ = 11
* 3+3+3+3+3+3+3+3+3+3=30

¢ (21-20) + (22-21) + (28-22) + ... (210-29) = 511
= Note that each term (except the first
and last) is cancelled by another term 17




Evaluating sequences

« Rosen, guestion 14, page 3.2
m S:{1,3,5,7}

* What is g
» 1+3+5+7=16
* Whatis ZgJ°
= 12+ 32+52+72=84
* Whatis 25 (1/))
« 1/1+1/3+1/5+1/7=176/105
* Whatis 251
s 1+1+1+1=4




Summation of a geometric series

« Sum of a geometric
series:

« Example:




Proof of last slide

« Ifr =1, then the sum Is:

S=> a=(n+la
=0




Double summations

* Like a nested for loop

* |s equivalent to:
int sum = O;
for ( int 1 =1; 1 <= 4; 1++ )
for ( int J =1; J <= 3; Jj++ )
sum += 1%3;




Useful summation formulae

« Well, only 1 really important one:

Zn:k _ n(n+1)

2




